meta-calculator

Top Statistics Formulas:

Here you will find the most common statistics equations and formulas used in high school and fundamental university courses. These include basic statistical measures and probability formulas. For more calculus based statistics formulas, please see here.

Basic Equations	2
Average or Mean	2
Median	2
Mode	2
Percent Change	2
Statistical Measures	3
Standard Deviation	3
Variance	3
Covariance	3
Chi Squared	4
Where Oi is the observed value and Ei is the expected value	4
Probability	4
Probability of Event A	4
Probability of Complement of Event A	4
Multiplication Rule Independent Events	4
General Multiplication Rules	4
Addition Rule Mutually Exclusive Events	4
General Addition Rule	5
Expected Value	5

meta-calculator

Top Statistics Formulas:

For more statistics formulas

Basic Equations

Average or Mean

$$\overline{x} = \sum \frac{x_i}{N} = \frac{\text{sum of observations}}{\text{# of observations}}$$

1, 2, 2, 4, 5 Mean = (1+2+2+4+5)/5 = 2.8

Where x_i are all the individual data points, and N is the number of points being averaged

Median

The middle value in the set of numbers that are arranged in ascending order. If there are an even number of values, the median is the average of the two middle values.

If n is odd

$$\left(\frac{n+1}{2}\right)$$
th term

If n is even

$$\left(\frac{n}{2}\right)$$
th term + $\left(\frac{n}{2} + 1\right)$ th term

Mode

The most frequently occurring value in the set of values

Percent Change

% Change =
$$\frac{New Value - Old Value}{Old Value} \times 100$$
%

- + Means an increase
- Means a decrease

Statistical Measures

Standard Deviation

Standard Deviation is one measure of how spread the data is.

Sample

$$S = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

Where x is the sample mean and n is the number of observations

Population

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}}$$

Where μ is the population mean and n is the number of observations

Variance

Variance is one measure of how spread the data is. It is the standard deviation squared.

Sample

$$S^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n-1}$$

Where *x* is the sample mean and n is the number of observations

Population

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{n}$$

Where μ is the population mean and n is the number of observations

Covariance

Covariance is a measure of two variables' joint variability, or how they will vary together.

Sample

$$Cov(x,y) = \frac{\sum (x_i - \overline{x})^* (y_i - \overline{y})}{n-1}$$

The measure of variance between variables x and y, where \overline{x} is the sample mean of the x values, \overline{y} is the mean of the y values, and y is the number of observations

Population

$$Cov(x,y) = \frac{\sum (x_i - \overline{x})^* (y_i - \overline{y})}{n}$$

Chi Squared

Chi Squared tells you the difference between your observations and what you expected.

$$X^{2} = \sum \frac{\left(O_{i} - E_{i}\right)^{2}}{E_{i}}$$

Where \boldsymbol{O}_i is the observed value and \boldsymbol{E}_i is the expected value

Probability

Probability of Event A

$$P(A) = \frac{f}{n}$$

Where f is the frequency of the event and n is the sample size

Probability of Complement of Event A
In other words, the probability of A not occurring.

$$P(Not A) = 1 - P(A)$$

Multiplication Rule Independent Events In other words, the probability of A and B occurring independently.

$$P(A \text{ and } B) = P(A) * P(B)$$

For example,

General Multiplication Rules

To be used when one event A affects the probability of event B.

$$P(A \text{ and } B) = P(A) * P(B \text{ given } A)$$

$$P(A \text{ and } B) = P(B) * P(A \text{ given } B)$$

Addition Rule Mutually Exclusive Events In other words, the probability of either A or B occurring.

$$P(A \text{ or } B) = P(A) + P(B)$$

General Addition Rule

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Expected Value

Expected Value is the final predicted value of a variable, computed by multiplying each possible value by its probability and summing it.

$$P(90) = 0.4$$

 $P(80) = 0.6$
 $E[X] = 84$

$$E[X] = \sum_{i} x_{i} P(x_{i})$$

Where x_i are the values of x and $P(x_i)$ are the probabilities of each value

Use Statistics Calculator
Use T-Test Calculator
Calculate Standard Deviation
Download PDF