meta-calculator
Top Physics Formulas:Here you will find the most common physics equations and formulas used in high school andfundamental university courses. These include, but are not limited to, mechanics, kinematics,energy, uniform circular motion, and waves formulas.
Basic Mechanics Equations 2
Velocity 2
Acceleration 2
Force 2
Weight 2
Kinematics Equations (Equations of Motion) 2
Energy 3
Gravitational Potential Energy 3
Kinetic Energy 3
Elastic Potential Energy 3
For more energy equations see here. 3
Uniform Circular Motion 3
Angular Velocity \& Acceleration 3
Linear Velocity \& Acceleration 3
Torque 4
Waves \& Light 4
Frequency of EM Wave 4
Velocity of EM Wave 4
Snell's Law 4

meta-calculator

Top Physics Formulas:

For more physics formulas visit Wikipedia.
Basic Mechanics Equations

Velocity
$\bar{v}=\frac{\Delta x}{\Delta t} \quad v=\frac{d x}{d t}$

Acceleration

$\bar{a}=\frac{\Delta v}{\Delta t} \quad a=\frac{d v}{d t}$

Where x is the displacement and t the time.
The first equation gives the average velocity while the second equation is the instantaneous velocity

Where v is the velocity and t the time. The first equation gives the average acceleration while the second equation is the instantaneous acceleration

Force	Where m is the mass of the object and a is
$F=m a$	the acceleration

Weight

$w=m g$

Where m is the mass and g is the gravitational acceleration. On earth, it is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Kinematics Equations (Equations of Motion)

1. $v=v_{0}+a t$
2. $\Delta x=\frac{v+v_{0}}{2} t$
3. $\Delta x=v_{0} t+\frac{1}{2} a t^{2}$
4. $v^{2}=v_{0}^{2}+2 a \Delta x$

- To be used under constant acceleration
Δx Displacement
t Time
v_{0} Initial Velocity
v Final Velocity
a Acceleration

Energy

Gravitational Potential
Energy
$P E_{g}=m g h[J o u l e s]$
Where m is the mass of the object, g is the gravitational constant
$9.8 \mathrm{~m} / \mathrm{s}^{2}$, and
h is the height of the object

Kinetic Energy
$K E=\frac{1}{2} m v^{2}[$ Joules $]$ Where m is the mass of the object, v is the velocity of the object

Elastic Potential Energy
$P E_{s}=\frac{1}{2} k x^{2}$ [Joules]
Where k is the spring constant and x is the displacement

For more energy equations see here.

Uniform Circular Motion

Angular Velocity \&
Acceleration

$$
\begin{array}{ll}
\bar{\omega}=\frac{\Delta \theta}{\Delta t} & \omega=\frac{d \theta}{d t} \\
\bar{\alpha}=\frac{\Delta \omega}{\Delta t} & \alpha=\frac{d \omega}{d t}
\end{array}
$$

Where theta is the angular displacement. The first equation gives the average angular velocity, while the second is the instantaneous angular velocity. The third equation gives the average angular acceleration, while the fourth is the instantaneous angular acceleration

Linear Velocity \&	The angular velocity ω can be
Acceleration	converted into a linear velocity v
$v=\omega r$	with this equation where r is the
radius	
$a=\alpha \times r-\omega^{2} r$	The angular acceleration α can
be converted into a linear	
acceleration a with this equation	
where r is the radius	

Torque	Where F is the force acting in the
$\tau=r \times F$	direction of rotation, and r is the
arm length	

Waves \& Light

Frequency of EM Wave
$f=\frac{1}{T}$

Where T is the period of the wave

Velocity of EM Wave	Where λ is the wavelength and f is the frequency
Snell's Law	Where n_{1} and n_{2} are the indices $n_{1} \theta=n_{2} \theta$
of refraction for the given mediums and θ_{1} is the angle of incidence and θ_{2} is the angle of refraction	

Use the Scientific Calculator

Use the Graphing Calculator
Download PDF

